
六年级上册数学分数除法教案
作为一名教学工作者,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那要怎么写好教案呢?下面是小编收集整理的六年级上册数学分数除法教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级上册数学分数除法教案1教学目标
1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。
2.提高学生分析和解答应用题的能力。
3.渗透对应思想。
教学重点
掌握数量关系,明确解题思路。
教学难点
会分析数量间的等量关系。
教学准备
投影片。
教学过程
(一)复习
1.看句子列算式。
2.复习数量关系。
(1)行程问题中的三量关系式是什么?
(2)相遇问题与行程问题三量关系有什么区别?是什么?
投影出示:速度和×相遇时间=合走路程
合走路程÷速度和=相遇时间
合走路程÷相遇时间=速度和
(3)它们同类量之间有什么关系?
合走路程=甲走的路程+乙走路程
速度和=甲的速度+乙的速度
(二)导入新课
这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)
(三)讲授新课
例1两地相距13千米,甲乙二人从两地同时出发,相向而行,经
1.读题,说出已知、未知条件分别是什么?
2.分析:
(1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?
(相遇问题,相遇时间给的是分数。)
(相遇时间,甲乙二人都行了这么长时间。)
在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?
(3)请同学们自己选择方法做这道题。
(4)投影反馈各种不同做法,讲算理。
说每步的算理。
解③设乙每小时行x千米。
为什么这样列方程,根据是什么?
(甲走的路程+乙走的路程=总路程)
解④设(略)
列方程根据是:速度和×相遇时间=距离。
(5)对比用方程解答和用算术方法解答从解题思路上有什么不同?
(算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)
(6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。
(1)读题分析:
这道题是一道什么样的应用题?
分数应用题的解题步骤是什么?
(一、认真审题;二、分析重点句;三、确定单位“1”;四、准确画图;五、列式计算。)
(2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好
共修的总和。)
(3)同学们自己画图,列式。(一生板演)
解①设这段公路长x米。
等号左边和等号右边各表示什么?
为什么这样列式?
以先求两周共修的,然后再求这段公路全长多少千米。)
(4)两种解法的思路有什么不同?
(方程法设全长单位”1“为x,根据分数乘法的意义来列等量关系
出单位”1“。)
(5)例2与以前学的简单分数应用题的区别是什么?
(简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)
以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。
(三)巩固练习
六年级上册数学分数除法教案2教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔X元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果X千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的'人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模 ……此处隐藏2498个字……的综合算式。
(6))提问:综合算式里分别含有几级运算?应先算什么,再算什么?
7)小结:分数混合运算和整数混合运算相同,在同级运算中,如果
没有括号,按从左往右的顺序计算。如果有两级运算,先算乘除,再算
加减。有括号的先算小括号,再算中括号。
活动3【练习】巩固练习
1、完成教材第33页“做一做”。
提问:梯形的面积公式是什么?
2、完成教材第35页第10题。
活动4【作业】课堂小结
这节课你有什么收获?
六年级上册数学分数除法教案8教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
六年级上册数学分数除法教案9教学目标
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学难点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学过程
一、复习引新
(一)说出下面各数的倒数.
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义.
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.
5.练习反馈.
根据:,写出,
(二)教学分数除以整数的计算法则
1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米.
(3)教师板书整理.
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:
把米铁丝平均分成6段,就是求米的是多少,列式是:
3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.