可能性教案

时间:2025-03-31 10:14:05
【必备】可能性教案四篇

【必备】可能性教案四篇

作为一名老师,时常需要编写教案,教案是教学活动的依据,有着重要的地位。我们应该怎么写教案呢?以下是小编为大家整理的可能性教案4篇,欢迎阅读与收藏。

可能性教案 篇1

复习内容:教科书第12册112页-115页整理与反思和练习与实践。

教学目标:

1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

3、进一步体会有关平均数、众数、中位数在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。

教学过程

一、复习有关统计的知识和方法。

1、引导学生回忆收集和整理数据的方法。

①广泛地有针对性地收集各种原始数据。

②对数据进行加工,去粗取精,去伪存真。

③数据处理、分类和计算。

④ 按一定的顺序或方式表示出来。

提问:收集数据有哪些方法?(小组讨论,集体交流)

小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。

2、提问:记录数据有哪些方法?举例说明。

(如选举中队长统计选票时可以用画正字的方法,作图形符号的方法)

3、出示填空题。

( )统计图能清楚地表示出数量的增减变化情况

( )统计图可以清楚地表示出各部分同总数的关系。

( )统计图能清楚地直接比较出数量的多少。

小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的特点,我们要根据数据特点进行选择。

4、指导学生完成第1题

⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)

⑵思考:这两组数据分别制成什么统计图比较合适?为什么?

⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。

⑷提出一些问题让学生看图回答。

二、回忆不同统计图的特点。

(一)出示教材113页的统计图指导观察统计图

1、指名回答,这是什么统计图?

2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?

(①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的直条不是并着排列的,而时是首尾相接。)

3、独立完成统计表

根据图中的信息将统计表填写完整。

4、小组交流讨论教材中提出的4个问题

引导学生可以根据统计图或统计表进行回答出示条形统计图

(二)指导完成第3题

1、出示第3题统计表,说说从表中可以了解哪些信息?

2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)

3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)

4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。

5、在讨论中完成对两个问题的解答。

(三)指导完成第4题

1、讨论扇形统计图的有关特征?

2、独立完成书上3个问题的解答,然后集体校对

课前思考:

考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。

在复习统计时,要让学生认识到各类统计图的特点,有关中位数、众数的理解可以结合具体的练习题来分析。

教材提供的第113页的第2题的条形统计图与一般的条形统计图表示有所不同,需要加以指导,要让学生都能看懂这幅统计图。

第3题中涉及的计算较多,需要指导学生根据统计图提供的数据现分别计算出两个年级的学生总人数,然后再计算。

讨论第6题时要让学生看到由于男生体重的10个数据中出现了2个极端数据,所以平均数的位置明显偏离这组数据的中心,这种情况下用中位数代表男生体重的一般情况比较合适。

课后反思:

复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。

练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。

通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。

课前思考:

本节课不仅要学生能够会绘制统计图,更要体会不同统计图的特点,会灵活选择适当的统计图。让学生知道条形统计图:能清楚的看出数量的多少。折线统计图:不仅能清楚的看出数量的多少,而且能清楚的知道数量的增减变化情况。扇形统计图:能清楚的看出各部分数量同总数量之间的关系。众数:出现次数最多的一个数。中位数:正中间的一个数。平均数:总数份数。学生不容易判断的是用中位数、众数和平均数哪个数据更具代表性。

课后反思:

指导学生计算每组数据的中位数,让学生计算中位数要注意先把数据按从大到小或从小到大的顺序进行排列。在完成P114页第4题时,学生的估计能力不是很好,当然这要在充分读清楚题意的基础上,合理的进行估计。如:本课中各档节目所占的百分比是容易估计得到的,但时间不太容易掌握,因此先不估计时间。在画折线统计图时,一定要注意所描的点和点之间的线段,是直线的连在一起画,不是直线时,要一段一段画。

课后反思:

复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面 ……此处隐藏2434个字……错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

(三) 讲解例题,综合运用:

在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的'概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

(四) 练习反馈,巩固新知:

做一做:

1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

(根据班级各小组的实际人数回答)

2、 转盘上涂有红、蓝、绿、黄四种颜色,

每种颜色的面积相同。自由转动一次转盘,

指针落在红色 区域的概率是多少?

指针落在红色或绿色 区域的概率是多少?

(1/4,1/2)

(五)变式练习,拓展应用:

例2:如图所示的是一个红、黄两色各占

一半的转盘,让转盘自由转动2次,指针2

次都落在红色 区域的概率是多少?一次落在

红色 区域,另一次落在黄色 区域的概率是多少?

分析:

(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

(3)统计所求各个事件所包含的可能结果数。

解:根据如图的树状图,所

有可能性相同的结果数有4种:

黄,黄;黄,红;红,黄;红,红。

其中2次指针都落在红色 区域的可能结

果只有1种,所以2次都落在红色 区域

的概率 ;

一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

(五) 反思总结,布置作业:

引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

五、教学说明:

本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇4

教学内容:

教材P107—109

教学目标:

1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

3、 通过实际操作活动,培养学生的动手实践能力。

3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学重、难点:

知道事件发生的可能性是有大小的。

教学过程:

一、引入

出示小盒子,展出其中的小球色彩、数量,

如果请一位同学上来摸一个球, 他 摸到什么颜色的球的可能性最大

二、探究新知

1、教学例5

(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

记录次数

活动汇报、小结

(2)袋子里的红球多还是黄球多?为什么这样猜?

小组内说一说

总数量有10个球,你估计有几个红,几个黄?

(3)开袋子验证

让学生初步感受到实验结果与理论概率之间的关系。

2、练习

P107“做一做”

3、小结

三、巩固练习

P109 6

[1]学生说说掷出后可能出现的结果有哪些

[2]猜测实验后结果会有什么特点

[3]实践、记录、统计

[4]说说从统计数据中发现什么?

[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。

P110 7

《【必备】可能性教案四篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式