高中数学函数教案

时间:2024-07-12 18:51:27
高中数学函数教案

高中数学函数教案

作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。那么你有了解过教案吗?以下是小编帮大家整理的高中数学函数教案,欢迎阅读,希望大家能够喜欢。

高中数学函数教案1

教材:已知三角函数值求角(反正弦,反余弦函数)

目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。

过程:

一、简单理解反正弦,反余弦函数的意义。

1在R上无反函数。

2在 上, x与y是一一对应的,且区间 比较简单

在 上, 的反函数称作反正弦函数,

记作 ,(奇函数)。

同理,由

在 上, 的反函数称作反余弦函数,

记作

二、已知三角函数求角

首先应弄清:已知角求三角函数值是单值的。

已知三角函数值求角是多值的。

例一、1、已知 ,求x

解: 在 上正弦函数是单调递增的,且符合条件的角只有一个

(即 )

2、已知

解: , 是第一或第二象限角。

即( )。

3、已知

解: x是第三或第四象限角。

(即 或 )

这里用到 是奇函数。

例二、1、已知 ,求

解:在 上余弦函数 是单调递减的,

且符合条件的角只有一个

2、已知 ,且 ,求x的值。

解: , x是第二或第三象限角。

3、已知 ,求x的值。

解:由上题: 。

介绍:∵

上题

例三、(见课本P74-P75)略。

三、小结:求角的多值性

法则:1、先决定角的象限。

2、如果函数值是正值,则先求出对应的锐角x;

如果函数值是负值,则先求出与其绝对值对应的锐角x,

3、由诱导公式,求出符合条件的其它象限的角。

四、作业:

P76-77 练习 3

习题4.11 1,2,3,4中有关部分。

高中数学函数教案2

一、教学目标:

了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.

二、教学重点:

利用导数判断一个函数在其定义区间内的单调性.

教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.

三、教学过程

(一)复习引入

1.增函数、减函数的定义

一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.

2.函数的单调性

如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.

在单调区间上增函数的图象是上升的,减函数的图象是下降的.

例1讨论函数y=x2-4x+3的单调性.

解:取x1<x2,x1、x2∈R,取值

f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差

=(x1-x2)(x1+x2-4)变形

当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号

∴y=f(x)在(-∞, 2)单调递减.判断

当2<x1<x2时,x1+x2-4>0,f(x1)<f(x2),

∴y=f(x)在(2,+∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2,+∞)单调递增。

能否利用导数的符号来判断函数单调性?

高中数学函数教案3

【教学目标】

(一)知识与技能

1、了解幂函数的概念,会画幂函数y?x,y?x,y?x,y?x,y?x的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。

2、了解几个常见的幂函数的性质。

(二)过程与方法

1、通过观察、总结幂函数的性质,提高概括抽象和识图能力。

2、体会数形结合的思想。

(三)情感态度与价值观

1、通过生活实例引出幂函数的概念,体会生活中处处有数学,树立学以致用的意识。

2、通过合作学习,增强合作意识。

【教学重点】

幂函数的定义

【教学难点】

会求幂函数的定义域,会画简单幂函数的图象、

【教学方法】

启发式、讲练结合教学过程

一、复习旧课

二、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积S?a2,这里S是a的函数。

问题3:如果正方体的边长为a,那么正方体的体积V?a3,这里V是a的函数。

问题4:如果正方形场地面积为S,那么正方形的边长a?S12,这里a是S的函数

问题5:如果某人ts内骑车行进了1km,那么他骑车的速度V?t?1km/s,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

(一)幂函数的概念

如果设变量为x,函数值为y,你能根据以上的生活实例得到怎样的一些具体的函数式?

这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?幂函数的定义:一般地,我们把形如y?x?的函数称为幂函数(power function),其中x是自变量,?是常数。 【探究一】幂函数有什么特点?

结论:对幂函数来说,底数是自变量,指数是常数试一试:判断下列函数 ……此处隐藏19552个字……>3、本设计的特点

本设计没有刻意求新,而是重在扎实严谨上作文章。教学内容的安排由易到难;各教学环节环环相扣,层层深入,过渡严谨自然。教学活动突出了学生的主体地位。

《孔雀东南飞》教学设计

教学目标:

1、学习积累文言基础知识:实词、多义词、偏义复词、古今异义词、互文等,培养学生阅读文言文的能力

2、分析人物形象,理解刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶,深入理解作品的社会意义,培养学生分析鉴赏文学作品的能力并引导学生树立正确的爱情观、价值观

3、了解乐府诗歌的常用表现手法赋、比、兴

教学重点:刘兰芝、焦仲卿对爱情的执著追求和封建礼教、专制家长摧残青年男女爱情幸福的罪恶

教学难点:赋、比、兴手法

教学用具:课件

教学时数:三课时

教学过程:

第一课时

活动内容:疏通文本,理清情节结构,初步认识作品思想内涵

活动过程:

一、导入

爱情是文学作品永恒的主题,古今中外的文人墨客写下无数优美的诗篇讴歌美丽的爱情。但在中国漫长的封建社会里,封建礼教、家长制等传统文化的冷漠残酷使无数美丽的爱情遭到了无情的摧残,从而造成了一幕幕爱情悲剧。今天就让我们走近焦仲卿和刘兰芝的爱情悲剧,感受封建家长制的罪恶和这种制度下的青年男女对爱情的不屈追求。

二、学生自己阅读注解,识记有关文学常识

1、乐府:本是汉武帝设立的音乐机关,它的职责是采集民间歌谣或文人的诗来配乐,以备朝廷之用。它所搜集整理的诗歌后世就叫“乐府诗”或“乐府”。

2、《孔雀东南飞》是我国古代最长的一首长篇叙事诗,也是乐府民歌的代表作之一,与北朝的《木兰辞》并称“乐府双璧”。

3、本诗出自南朝徐陵编写的《玉台新咏》。《玉台新咏》是继《诗经》、《楚辞》之后最早的一部诗歌总集。

三、初读课文,疏通文意,掌握有关文言知识

1、学生默读全诗,借助工具书和注释疏通文意,不懂的词句做出记号

2、就自己不懂的词句在小组内讨论交流

3、教师解答学生解决不了的疑难字词,并指导学生理解归纳本课中古今异义词、偏义复词、互文等文言知识

出示示例:(前两类现象各出示一个例子,其他让学生自己去整理)

①古今异义词

汝岂得自由(古:自作主张 今:没有束缚)

可怜体无比(古:可爱 今:值得同情)

叶叶相交通(古:交错相通 今:指运输)

本自无教训(古:教养 今:失败的经验)

处分适兄意(古:处理 今:处罚)

②偏义复词

两个意义相关或相反的词连起来当作一个词使用,实际上只取其中一个词的意义,另一个词只作陪衬。如:

昼夜勤作息(只取“作”之意,“息”只为陪衬)

便可白公姥(只取“姥”之意)

我有亲父母(只取“母”之意)

逼迫兼弟兄(只取“兄”之意)

③ 互文句

东西植松柏,左右种梧桐

枝枝相覆盖,叶叶相交通

四、在扫清文字障碍的基础上,再浏览课文。

1、结合诗前小序,了解故事梗概

2、理清情节结构,给故事发展的每一个阶段拟一个小标题

学生回答后教师出示:

故事开端(1-2段) 自请遣归

教案网权威发布高中高一数学教案:两角差的余弦公式教案,更多高中高一数学教案相关信息请访问教案网。

两角差的余弦公式

【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案

2、有余力的学生可在完成探究案中的部分内容。

【学习目标】

知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。

过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。

情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。

.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用

【难点】两角差余弦公式的推导过程

预习自学案

一、知识链接

1. 写出 的三角函数线 :

2. 向量 , 的数量积,

①定义:

②坐标运算法则:

3. , ,那么 是否等于 呢?

下面我们就探讨两角差的余弦公式

二、教材导读

1.、两角差的余弦公式的推导思路

如图,建立单位圆O

(1)利用单位圆上的三角函数线

又OM=OB+BM

=OB+CP

=OA_____ +AP_____

=

从而得到两角差的余弦公式:

____________________________________

(2)利用两点间距离公式

如图,角 的终边与单位圆交于A( )

角 的终边与单位圆交于B( )

角 的终边与单位圆交于P( )

点T( )

AB与PT关系如何?

从而得到两角差的余弦公式:

____________________________________

(3) 利用平面向量的知识

用 表示向量 ,

=( , ) =( , )

则 . =

设 与 的夹角为

①当 时:

=

从而得出

②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =

此时 =

从而得出

2、两角差的余弦公式

____________________________

三、预习检测

1. 利用余弦公式计算 的值.

2. 怎样求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值.

例2.已知 , 是第三象限角,求 的值.

训练案

一、 基础训练题

1、

2、

3、

二、综合题

--------------------------------------------------

《高中数学函数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式